Subspace method for continuous-time fractional system identification
نویسندگان
چکیده
Abstract: The aim of this paper is to develop a subspace method for state-space identification of continuous-time systems using fractional commensurate models. As compared to the classical state-space representation, the commensurate differentiation order must be estimated besides the state-space matrices. The latter are estimated with conventional subspace-based techniques using QR and singular value decompositions, whereas the commensurate order is estimated using nonlinear programming. This is the first method developed for multi-input multi-output system identification of fractional models. The performances are demonstrated by simulations at various signal-to-noise ratios assuming a known then an unknown commensurate order.
منابع مشابه
Multivariable Identification of Continuous-time Fractional System
ABSTRACT This paper presents two subspace-based methods, from the MOESP (MIMO output-error state space) family, for state-space identification of continuous-time fractional commensurate models from sampled input-output data. The methodology used in this paper involves a continuous-time fractional operator allowing to reformulate the problem so that the state-space matrices can be estimated with...
متن کاملPreconditioned Generalized Minimal Residual Method for Solving Fractional Advection-Diffusion Equation
Introduction Fractional differential equations (FDEs) have attracted much attention and have been widely used in the fields of finance, physics, image processing, and biology, etc. It is not always possible to find an analytical solution for such equations. The approximate solution or numerical scheme may be a good approach, particularly, the schemes in numerical linear algebra for solving ...
متن کاملLie symmetry Analysis and Explicit Exact Dolutions of the Time Fractional Drinfeld-Sokolov-Wilson (DSW) System
In this study coupled system of nonlinear time fractional Drinfeld-Sokolov-Wilson equations, which describes the propagation of anomalous shallow water waves is investigated. The Lie symmetry analysis is performed on the model. Employing the suitable similarity transformations, the governing model is similarity reduced to a system of nonlinear ordinary differential equations with Erdelyi-Kober ...
متن کاملNon-linear Fractional-Order Chaotic Systems Identification with Approximated Fractional-Order Derivative based on a Hybrid Particle Swarm Optimization-Genetic Algorithm Method
Although many mathematicians have searched on the fractional calculus since many years ago, but its application in engineering, especially in modeling and control, does not have many antecedents. Since there are much freedom in choosing the order of differentiator and integrator in fractional calculus, it is possible to model the physical systems accurately. This paper deals with time-domain id...
متن کاملSolving large systems arising from fractional models by preconditioned methods
This study develops and analyzes preconditioned Krylov subspace methods to solve linear systems arising from discretization of the time-independent space-fractional models. First, we apply shifted Grunwald formulas to obtain a stable finite difference approximation to fractional advection-diffusion equations. Then, we employee two preconditioned iterative methods, namely, the preconditioned gen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009